
Draft preprint, to appear in a book on personas by John Pruitt and Tamara Adlin to be published by Morgan
Kaufmann. © 2005 Larry Constantine

PREPRINT

Users, Roles, and Personas

Larry Constantine, IDSA
Chief Scientist, Constantine & Lockwood, Ltd.

You cannot think outside the box when you are trying to represent a box.
Brian Hayes

To do effective design you need to understand your users and their needs. While no credible
school of thought in design would take serious exception, opinions vary considerably on how
best to gain that understanding and how to record and communicate it once you do. Models of
one form or another are the medium for the message in most design methods. Models function
as intermediaries between the often ambiguous, overwhelmingly complex reality of actual users
and the more narrowly focused and specific needs of designers.

In usage-centered design (see sidebar, “Users or Usage”), user roles capture and carry the
essential understanding about users. User roles, one of the three core models of usage-centered
design, are close cousins of personas but differ in a number of ways of potential significance to
designers. In an attempt to sound a counterpoint to complement the main themes of the book,
this chapter introduces user roles in the context of usage-centered design and explores the
relationships between user roles and personas. Compared to typical personas as presented in
this book and elsewhere, user roles are a more compact and concise representation that is more
finely focused on issues with direct relevance for visual and interaction design. For these
reasons, user role models can also be simpler and faster to develop. Although roles and
personas can complement each other, user role models may also, under some circumstances
and for some purposes, offer distinct advantages for designers.

The connections between user roles
and personas are not entirely
accidental, as usage-centered design
and goal-directed design share similar
albeit not identical philosophies of
design and a history of mutual
influence (Constantine and Lockwood,
1999; Cooper and Reimann, 2003).
Both approaches are organized design
processes that emphasize fitting the
interaction design to the genuine
needs of users. Although probably not
as well known as goal-directed design,
usage-centered design is a widely
practiced alternative with a decade-
long track record for producing
innovation and breakthroughs in user-
performance, particularly in complex
applications where efficient and
dependable user performance is
critical, such as in medical informatics
(Strope, 2003) and industrial

Users or Usage
The distinction between usage-centered design and
user-centered methods is, as the terms themselves
suggest, a matter of emphasis rather than an
absolute difference (Constantine and Lockwood,
2002; Constantine, 2004a). Whereas user-centered
design makes users per se the center of attention and
seeks to promote user satisfaction with the entire
user experience, usage-centered design is more
narrowly focused on user performance and on the
creation of tools to enhance the efficiency and
dependability of user performance. Although both
approaches combine field study and user involvement
with modeling, in usage-centered design the models
are in the foreground with user studies and user
involvement in the background. This difference in
emphasis can lead to differences in outcomes.
Indeed, it has been argued that over-dependence on
user feedback and involvement in user-centered
approaches can discourage innovation and contribute
to unnecessarily conservative designs (Constantine,
2004a).

Constantine & Lockwood, Ltd.

page 2 of 18

automation (Windl, 2002a). Usage-
centered design has also been
influential in shaping other methods,
most notably user experience modeling
(Heumann, 2003) within the Unified
Software Development Process
(Jacobson, Booch, and Rumbaugh, 1999;
Kruchten, Ahlqvist, and Byland, 2001),
which borrows and adopts core usage-
centered modeling techniques first
introduced into object-oriented software
engineering (Ahlqvist, 1996), the
methodological precursor of the Unified
Process.

In usage-centered design, models guide
the designer throughout the process. As
represented schematically in Figure 1,
the final visual and interaction design
derives more or less directly from a
content model or abstract prototype
(Constantine, 1998; 2003; Constantine
et al. 2000) that models the content and
organization of the user interface
independent of its detailed appearance
and behavior. The content model is itself based on a comprehensive task model expressed in
the form of so-called essential use cases (Constantine, 1995; Constantine and Lockwood, 2001)
or task cases. (See sidebar, “Use Case Essentials.”) Task cases, in turn, support user roles as
represented in the user role model. Even the initial investigation and data gathering, which
provide the information and insight needed to build user role and task models in the first
place, is a model-driven process based on exploratory modeling (Windl, 2002a). In this process,
provisional modeling of user roles and tasks is used to generate questions and issues that help
focus field work into a faster and more effective inquiry process.

Figure 1 - Logical dependency of models in usage-centered design.

Usage-centered design began its evolution without a name when, in 1993, the author and Lucy
Lockwood formulated an improved form of use cases to help solve a user interface design

Users or Usage continued…
The emphasis on models and modeling in usage-
centered design evolved over time from the need for
a design process that was both easy to learn and
practice on the one hand and, on the other,
predictably led to superior designs. From its
inception, usage-centered design has been shaped by
the goal to enable ordinary user interface designers
to produce extraordinary results, to have a process
that is less dependent on the skill and artistry of a
few exceptional designers than on consistent
application of proven techniques. In the interest of
streamlining and systematizing the design process,
the models of usage-centered design are condensed,
simplified, and sharply focused on those matters with
greatest relevance for driving the design forward
toward the best results. Because of this in-built
efficiency, usage-centered design has proved
particularly compatible with short development cycles
and modern agile development methods
(Constantine, 2004b; Constantine and Lockwood,
2002; Patton, 2002, 2003). At the same time, usage-
centered design is a fully scalable approach that has
been applied to projects ranging from upwards of 50
developer-years (Windl, 2002b) to massive multi-year
efforts involving hundreds of developers.

page 3 of 18

problem. Use cases are one of the cornerstones of modern software engineering practice, but in
their original form (Jacobson et al., 1992) were not well suited for user interface design, having
too many built-in assumptions and premature decisions about the user interface being
designed. The abstract, simplified form of use cases created for usage-centered design came to
be known as task cases or essential use cases (Constantine, 1994; 1995) and have become
widely used in interaction design and requirements modeling (Constantine and Lockwood,
2001; Cohn, 2004). The need to anchor the task model in an appropriate understanding of users
quickly became apparent to those working with essential use cases. User roles (Constantine,
1995) emerged as an elaboration of the software engineering construct of Actors (Jacobson et
al., 1992), which, like use cases, required adaptation to better suit the needs of user interface
designers.

Roles and Personas
Both user roles and personas are effective means for capturing and conveying basic
understanding about users and for informing the design process, but they differ in important
ways. Personas describe users while user roles describe relationships between users and

Use Case Essentials
Use cases, first introduced by Ivar Jacobson as the pivotal model in object-oriented software
engineering (Jacobson et al., 1992), have become ubiquitous among software and Web-based
applications developers but are less well known among interaction designers. A use case is simply a
case of use represented in terms of the actions and variants performed by a system in interaction with
external actors, which can be either users or other systems. As originally conceived, use cases were
better suited for capturing systems-oriented requirements and guiding the software engineering
process than for user interface design. A classic example often used to illustrate use cases is
withdrawing cash from an ATM. Here is how one textbook (Kruchten, 1999) represents this task:

Withdraw Money
The use case begins when the client inserts an ATM card. The
system reads and validates the information on the card.

1. System prompts for PIN. The client enters PIN. The system validates
the PIN.

2. System asks which operation the client wishes to perform. Client
selects “Cash withdrawal.”

3. System requests amounts [sic]. Client enters amount.
4. System requests type. Client selects account type (checking,

savings, credit).
5. The system communicates with the ATM network to validate

account ID, PIN, and availability of the amount requested.
6. The system asks the client whether he or she wants a receipt. This

step is performed only if there is paper left to print the receipt.
7. System asks the client to withdraw the card. Client withdraws card.

(This is a security measure to ensure that Clients do not leave their
cards in the machine.)

8. System dispenses the requested amount of cash.
9. System prints receipt.
10. The use case ends.

As in this example, such conventional use cases contain many built-in assumptions about the design
and implementation of the user interface. As such, they do not facilitate separating the essence of the
user’s task from issues of user interface design. Moreover, user interests can be lost among the
systems-oriented details, as can be seen in this use case, where the user never actually takes the
money withdrawn.

page 4 of 18

systems. Personas are figurative models rather than abstract models, that is, they are
constructed to resemble real users, even down to photos, background information, and
personal history. Verisimilitude most likely contributes to the popularity of personas. They
sound like people you could know, and over the course of a project can take on a reality that
encourages empathy and facilitates thinking from the user perspective. What is more, many
people find that the creative process of constructing personas to be engaging and energizing.
Personas are fun.

By contrast, user roles do not resemble real people nor are they intended to; roles are spartan
abstractions narrowly focused on those aspects of the relationship most likely to be relevant to
presentation and interaction design. Compared to personas, user roles are a more technical and
formally structured model.

In the broadest sense, a user role has been defined as a collection of characteristic needs,
interests, expectations, and behaviors in relation to a particular system (Wirfs-Brock, 1993). In
its most compact form, the form now most commonly used, a user role is represented by its
Context, Characteristics, and Criteria, that is, the context in which it is played, the
characteristics of its performance, and the criteria that must be met by the design to support
successful performance of the role. Context includes the overall responsibilities of the role and
the larger work and environmental context within which it is played. Characteristics refer to
typical patterns of interaction, behaviors, and attitudes within the role. Criteria include any
special functional facilities needed for effective support of the role along with design objectives

Use Case Essentials continued…

Lucy Lockwood and I developed essential use cases in 1993 as a technique better suited to driving
visual and interaction design (Constantine, 1994; Constantine, 1995). We drew on the concept of
essential models introduced in a classic text on systems analysis (McMenamin and Palmer, 1984). An
essential model is one expressed in abstract, simplified, and generalized form independent of explicit
or implied assumptions about technology or implementation. Instead of user actions and system
responses, essential use cases represent user intentions and system responsibilities. The same task of
withdrawing cash when reduced to its essential form might look like this:

withdrawing cash from my account via ATM

USER INTENTIONS SYSTEM RESPONSIBILITIES

 1. request identification
2. provide identification 3. verify identification
 4. offer choices
5. choose 6. give cash
7. take cash

Abstraction and independence of implementation enables the modeler to focus on the essence of the
task from the perspective of the user without complicating the picture by jumping ahead into details of
the visual and interaction design. In this example, the abstract essence of my task as a user is just to
tell the system who I am, make a choice, and get my cash. Essential models challenge the designer
both to understand the true nature of the problem from a user perspective and to provide a much
simplified solution. Abstraction highlights opportunities for further exploration and for innovation,
such as making the choices offered reflect user intentions, such as withdrawing the usual amount,
rather than bank policies and systems structures. If I have only one account and always withdraw $240
dollars from it, I should not have to tell the ATM which account and re-enter the amount on every
withdrawal, for example.

Task models in the form of essential use cases have shown that they can help designers identify
innovative solutions that better fit with genuine user needs (Constantine and Lockwood, 1999; 2002;
Strope, 2003; Windl, 2002b).

page 5 of 18

of particular importance to that role. Such criteria for effective support of a role are sometimes
referred to as usability or user experience attributes. Checklists and templates have been
developed from extensive experience to help designers think about the central issues and judge
what is likely to be most relevant for user interface design. One example is shown in Figure 2;
others have been published elsewhere (Constantine and Lockwood, 1999; also
www.foruse.com/publications/templates/.)

Figure 2 - Checklist for user role context, characteristics, and criteria.

page 6 of 18

The most popular form of user role modeling is the card-based technique employed in agile
usage-centered design (Constantine and Lockwood, 2002; Constantine, 2004b). In this variant of
usage-centered design, simplified models are constructed rapidly using ordinary index cards.
The aim is to obtain a compact, easily created and managed model as quickly and painlessly as
possible. The streamlined nature of the process makes it particularly suitable for software
developed on tight schedules or using rapid iterative development, such as, extreme
programming (Jeffries, Anderson, and Hendrickson, 2001), but the techniques are equally
effective in more formal engineering processes and have been employed with equal success
even on very large and complex projects (Strope, 2003; Windl, 2002b).

An example of a user role card is shown in Figure 3, which describes the Pickup-Window-Ticket-
Issuing Role, one of a number of roles that might be played by ticket-window agents using
ticketing software for a multi-venue arts center. As in this example, user roles are given names
that highlight the core functional responsibilities of the role. A permanent identifier serves as a
handle to facilitate filing and tracking in large projects, particularly ones in which tracing of
requirements through the process may be required.

Figure 3 - Example of condensed, card-based model of a user role..

Each of the two views of users—roles and personas—has advantages and disadvantages. The
very realism of personas that makes them so natural, appealing, and memorable means that the
narrative can become complicated by potentially distracting details. In a fully-fleshed persona,
it can be difficult for the casual reader or even the well-informed designer to know what
matters and what does not, what is important for user interface design and what is not, what is
an accurate reflection of real user characteristics and what is mere concoction, particular as
creative invention is encouraged in constructing personas. Although the proponents of
personas would argue that properly constructed personas avoid distracting information when
described with “just the right detail” suitably anchored in conscientiously collected and
cataloged factoids, it might be hard to rationalize the design relevance of such gratuitous

page 7 of 18

details as that 9-year-old Tanner, an example persona introduced in Chapter 4, “rides his
skateboard and bike, plays in the yard and nearby creek,” “arrives home at 3:15,” and “gives [his
mother] a phone call” to reassure her.

Personas, because they are figurative models cast in concrete terms, can also easily cross the
boundaries from user description into user interface design, thus subtly steering aspects of the
user interface. Ogden, the “occasional user” of Chapter 4, is described as “wanting inline
instructions, ToolTips,” and “pre-populated fields with past values,” all of which might
ultimately be good ideas but are clearly descriptions of specific solutions rather than of general
features of a user perspective.

In contrast with persona construction, the goal in user role modeling is to capture what is most
salient in a most concise form. Differential description, in which each role is characterized
primarily by those things that distinguish it from other roles, can also help to condense the
information. Indeed, one of the operating principles of card-based modeling is that anything
that does not fit on a single index card is too complicated and should be further simplified and
condensed. In the interest of brevity, no attempt is made to create an interesting, engaging, or
recognizable portrait of the user. The abbreviated description defining a user role is closest to
the concepts of a skeleton or a resume-style foundation document introduced in Chapter 4, but
with the added twist of structuring and focusing the narrative in predefined categories deemed
most likely to be of direct value in steering the design.

Portraying archetypal users as fully formed people may have a certain humanistic appeal, but
users as people are complex and multifaceted, as is reflected in the elaborations needed to lend
realism to personas. The relationships users have with any particular system are, by contrast,
necessarily simpler and more limited. By focusing narrowly on the relationships between users
and systems rather than on users more broadly, and by employing abstraction rather than
elaboration, user role modeling offers designers a more precise model of users targeted more
specifically to design needs.

Another difference in the two approaches is that, with personas, the ideal is to fully describe a
small number of archetypal users. User role modeling seeks to cover the playing field with a
collection of interrelated but distinct descriptions of all the various roles that users can play in
relation to the system. In most cases, then, user roles will outnumber personas but the
personas will be more elaborate. Whereas descriptions of fully developed personas can often fill
several pages, user roles are usually described on a single index card and seldom if ever take up
more than a page.

Modeling Users with Roles
In our experience, an extra step or two that helps to reveal the broad territory or sharpen
details can actually speed up the modeling process. We like to begin user modeling by mapping
out all the players in the story, even those who do not figure directly into shaping the user
interface design. For this reason, we typically start with neither Roles nor Personas, but with
Actors, the original software engineering concept that has become part of UML, the Unified
Modeling Language (Fowler and Scott, 1997) widely used in software engineering. In UML,
Actors are anything that interacts with a system.

To map out the complete context of use for a particular system and to define the requirements,
you need to know all the Actors, whether or not these are people. Next, you need to distinguish
User Actors (people) from System Actors—non-human systems that interact with the system.
Because System Actors interact through other interfaces, they are not, strictly speaking, part of
the user interface design problem, though they are part of the problem to be solved. System
Actors imply requirements that shape internal and back-end design and become input to the
software engineering and programming processes.

page 8 of 18

Among User Actors, you need to be careful to distinguish the Direct User Actors who have
hands-on interaction with the proposed system from Indirect (or Mediated) User Actors who do
not directly interact with a system but rather "use" it through intermediaries. These latter "off-
stage" players are involved in the “story” of the system in use, but, like extras in a movie, are
really part of the context within which the interaction takes place. Often they are important
stakeholders, so we do not want to forget them, but we do not normally need to model them in
detail for effective usage-centered design. For example, in the ticket sales application
introduced earlier, the telephone ticket agents are among the Direct User Actors, whereas the
customers on the other end of the phone are Indirect User Actors whose participation is
mediated by the telephone staff. We design the screens for the telephone ticket agent, the on-
stage Actor, but we must take into account the off-stage voice of the customer who is talking on
the other end of the line. Such customers may not see the screen or touch the keyboard, but
their presence as part of the Context of the Telephone-Selling Role can affect our design
decisions. We may, for example, avoid audible prompts from the sales application to keep from
distracting the customer or ticket agent or interrupting the conversation taking place over the
telephone.

Exactly as on the stage and screen, Actors can play many different roles, so we need to identify
all the Roles that all the Direct User Actors can play and within which they will interact with the
system. A User Role, remember, is a relationship. Because the Role focuses on the relationship
of users with a system, it captures most closely what it is important for the designer to
understand to develop the most effective visual and interaction design. Telephone ticket agents
might have very different relationships to the sales support system depending on whether they
are actually selling tickets or responding to telephone inquiries; we might call these the
Telephone-Query-Handling Role and the Telephone-Selling-Role. The Telephone-Query-Handling
Role, in turn, might be played by either regular telephone agents or by a supervisor.

Of course, Actors can switch roles, so the agent on the telephone might switch among different
relationships with the system even in the course of a single telephone call. An inquiry can turn
into a sale or a customer about to finalize a purchase might ask for more information. The
multiple roles played by a particular Actor help guide the design in terms of the flexibility and
ease of navigation required to be built into the user interface.

The entire usage context can be summed up with a simple diagram called a context map, such
as the one shown in Figure 4. A rectangle represents the boundary of the system being
designed. System actors are shown as connected directly to that system boundary, as indeed
they are. Direct Actors—the on-stage players—are shown as connected to the system by way of
the various Roles they play. Indirect Actors—the off-stage players—are shown as connected to
the Direct Actors that serve as intermediaries and through which Indirect Actors are involved
with the system.

For a given application, the roles in a complete catalog of user roles are typically not
independent of each other. Some roles, for example, are best thought of as specialized variants
of others, and some may be combinations that include two or more other roles. This
interdependence makes it possible to map out all the roles without a lot of repetition. For the
ticketing application, the Supervising-Telephone-Sales Role, for instance, might be described as
a specialized version of a Telephone-Selling Role, characterized by additional assumptions
about the incumbent, the user playing the role, and special needs in terms of functional
support. Whereas the Telephone-Selling Role may require only moderate training and little
domain knowledge regarding the business of an arts performance center, the Supervising-
Telephone-Sales Role assumes greater experience and significant domain knowledge. The
Supervising-Telephone-Sales Role adds to the Criteria the need for support of special
supervisory functions, such as overriding the conditions of sale or releasing seats held for VIPs.

page 9 of 18

Figure 4 - Context map for the example ticketing application.

For complex problems, the relationships among user roles can be represented diagrammatically
in a separate user role map, such as the one illustrated in Figure 5. In addition to specialization
and inclusion, user roles may have a workflow relationship in which one role depends on the
prior performance of another. For instance, the Pickup-Window-Ticket-Issuing Role in the
current example is said to be preceded by the Telephone-Selling Role, as shown in Figure 5.

Figure 5 - User role map for the example ticketing application.

page 10 of 18

Although it is useful to understand all the roles users can play in relation to a system, not all
roles are regarded as equally important. Some roles will be played more frequently than others
and will account for a greater portion of the use of the system. Some roles may be more
important than others for the practical success of a system. For example, in the ticket sales
application, telephone selling might happen every day whereas ticket windows might be staffed
only at performance times over the weekend. Nevertheless, the Current-Window-Selling Role,
which is responsible for in-person sales of tickets for today’s performances, is very important
for the business success of the ticketing application.

In usage-centered design, user roles are usually ranked by anticipated frequency and by
business importance. The agile modeling technique for making these rankings is to sort index
cards representing the roles into order (Constantine and Lockwood, 2002). On the basis of the
combination of these two potentially different views of priority, a small subset of roles is
distinguished as “focal” roles. Focal roles serve as a central focus for the rest of the design
process, but not to the exclusion of other user roles. For the ticket selling application, the card-
sorting exercise might select the Telephone-Selling Role, Current-Window-Selling Role, and the
Pickup-Window-Ticket-Issuing Role as focal roles. Focal roles are like primary personas in that
they are recognized as particularly important for a successful design.

Modeling User Tasks
Ultimately, the user interface must be designed to enable users to do things, which requires
more than just an understanding of users or the roles they play, but also a thorough
understanding of the tasks that users must be able to accomplish in performing those roles.
Indeed, task modeling is the very core of usage-centered design with its focus on user
performance. Tasks are modeled with task cases, a form of the use cases introduced in object-
oriented design (Jacobson et al., 1992). A task case represents a single, discrete intention
carried out by a user in some role. Task cases are also called essential use cases because they
are stripped down to the barest essentials of the task. Each task case is expressed as a dialog in
which user intentions and system responsibilities are abstract, simplified, and stripped of all
assumptions about technology or implementation. This form of description is intended to get
closer to the essence of what the task is really about from the perspective of the user in a role
and to avoid making unintended or premature assumptions about the form of the user
interface to be designed.

For example, in support of the Pickup-Window-Ticket-Issuing Role, the task case issuing held
ticket(s) for event might be defined as shown in Figure 6. Several things are worth noting about
this example and task cases in general. Unlike use cases, which are constrained always to begin
with a user action, task cases can begin with a system responsibility. As shown in this example,
task cases are simplified in part by focusing on the “happy case” (Cockburn, 2001) or the
normal course of interaction where everything goes well: the identification is valid, the desired
tickets are found, and so forth. The rationale for temporarily hiding or ignoring the alternatives
and exceptions is to promote an interface that is organized around the primary purposes as
viewed from the user in role more than around the numerous less likely alternatives and
exceptions that tend to dominate in the minds of programmers.

In contrast to scenarios, which are used in goal-directed design and some other design
approaches, task cases represent small pieces of the performance of a user role rather than a
relatively large story that has been elaborated with extra details to make it seem real and
believable. Instead, as with user roles, the language is spare and abstract. This leaves open
many alternative solutions for the designer to choose among. The same task case can apply
whether the ticket issuer depends on credit-card verification or types the user name or scans a
barcode imprinted confirmation form.

page 11 of 18

Figure 6 - Example of a task case expressed in essential form.

Task cases are identified based on the user role model in conjunction with whatever else is
known about the system being designed. Many task cases follow more or less directly from the
definition of roles. Among the defining criteria for the Supervising-Ticket-Sales Role referred to
earlier is the need to be able to override the normal selling price or to sell specially reserved
seats, which leads to formulating the task cases selling tickets(s) at discounted/special price
and selling ticket(s) for special seat(s). Some task cases are implied by the purpose and overall
responsibilities of a role. Successful performance of the Telephone-Selling Role requires selling
ticket(s) for seat(s) for performance(s); the Telephone-Query-Handling Role requires such task
cases as reviewing program/details for an event/performance and selecting
event(s)/performance(s) of possible interest. The Pickup-Window-Ticket Issuing Role obviously
requires issuing ticket(s) held for pickup. Other task cases may be based on requirements that
are not necessarily reflected directly in the user role model. For example, requirements
specifications or other artifacts might have to be reviewed to identify the need for releasing
donated seats for resale.

The complete task model is expressed by the narrative bodies of all the individual task cases
along with a task case map similar to a user role map but showing the interrelationships among
task cases. The task case model can be checked against the user role model to verify that all
user roles can be fully performed with the identified task cases and that every task case is
genuinely needed for the performance of some one or more roles. The objective is to be truly
comprehensive, to cover all tasks needed to fully perform all identified roles. In principle it
might seem that a complete task model is an unobtainable ideal, but in practice we have found
that, with well timed and thoughtful reviews along the way, it is rare to discover missing task
needs late in the game. This has held true even for very large and complex applications, such as
the Siemens STEP 7 Lite system (Windl, 2002b), a specialized integrated development
environment for automation programming that is roughly as complex as Visual Basic. In

page 12 of 18

support of 20 user roles, 270 task cases were identified, which accounted for all of the
functionality needed within the system.

From Abstract Tasks to Concrete Interfaces
Many designers develop paper prototypes or page mockups based directly on what they
understand from scenarios or other task-oriented models. In usage-centered design content
models or abstract prototypes serve as a bridge between task models and user interface
designs. I am using the term user interface design here to cover the design of every aspect of
the interface that mediates between users and systems. This includes both the visual or
presentation design as well as interaction design, by which I mean the specification of the
behavior of the user interface and the means by which users interact with it.

Abstract prototypes can be distinguished from the figurative prototypes used by most
designers. The latter are typically expressed as mockups or paper prototypes that are intended
to look like or more or less resemble real user interfaces, even if only as rough sketches.
Abstract prototypes are not intended to look like the real thing, but instead embody the
function and organization of user interfaces divorced from details of appearance and behavior.
In this way the complex and somewhat mysterious process of designing a user interface to fit
the task needs of users can be broken down into two simpler and better understood steps. The
contents and organization of the user interface can be derived more or less directly from a well
formed task case model, and a good visual and interaction design can, in turn, be developed
straightforwardly based on the content and organization expressed in an abstract prototype,
particularly one expressed in standard form using canonical abstract components (Constantine,
2003; Constantine et al., 2001). Canonical abstract prototypes are a highly structured and
standardized form of wire-frame schematic that enable designers to resolve problems in layout
and organization apart from details of presentation and interaction design. They use a
canonical or standardized collection of abstract user interface components to model the
abstract functions of the user interface as viewed from the perspective of the user. An example
of a draft abstract prototype for one portion of the telephone ticketing application is shown in
Figure 7. For more information about abstract prototyping and canonical abstract prototypes,
see the references cited.

Elements of the user role model enter again in developing the final user interface design. The
overall structure of a well designed user interface that fits closely with user needs can be
thought of as an elaboration of the structure of the user role model and the structure of the
task model that supports it. User roles provide direct architectural guidance such as rarely can
be derived from personas, since all the parts of the interface that provide functions or
information in support of a single role must form a closely interconnected set. For efficient
user performance, roles that can be played by the same actor who can switch between them
must be supported by parts of the user interface within easy reach of each other. Similarly,
closely connected task cases must be supported together on the user interface. Conversely,
roles that have little or no connections or are played by different actors can be supported
through more or less distinct and separated parts of the user interface.

Although such rules may seem rather obvious, in very large, complex systems, the architectural
guidance provided by the user role model and the task case map are invaluable and can help
designers avoid subtle mistakes that could otherwise lead to expensive changes in organization
late in development. Because the user role model is constructed to cover all supported roles
played by users, and the task case model is constructed to cover all tasks needed to support
those roles, it is easier to assert that a design is complete than where the design is based on a
handful of personas or a few scenarios that are representative but not exhaustive. The user role
and task models are easily validated through review by users, stakeholders, and independent
auditors and can be cross checked using techniques like the role support matrix (Constantine,

page 13 of 18

2001). Again, even on very large systems, missing features or functions are rare with usage-
centered designs based on full role and task modeling.

Figure 7 - Abstract prototype for ticket-issuing user interface using canonical abstract
components.

Details of the visual and interaction design, too, are shaped by insight captured in the user role
model. For example, returning to the Pickup-Window-Ticket-Issuing Role, the description of this
role favors an absolutely mechanical, foolproof design in which the normal flow of interaction
is trivial and the exceptions are all covered and handled in the most expeditious manner. If, for
example, the customer is identified by name and the system finds more than one match, the
screen can prompt the user to request a first name or ask whether the customer knows the
price or seat section or whatever bit of information distinguishes the ticket instances found by
the system. If the system is unable to find the tickets or there is some other problem, the user
can be prompted to say, “I’m sorry, but the system is having some problem with your tickets. If
you could step over to the Customer Service Desk to your right, someone there will be able to
help you.” In this way the “possible long queue of customers” referred to in the context of the
role is not exacerbated.

Both/And Modeling
It is possible to have it both ways, to get the precision and parsimony offered by user roles
along with the richness and realism of personas by combining them in the right way. In our
experience, reinforced by that of numerous clients and the even more numerous practitioners
we have trained, the disciplined abstraction of user roles make them better as the primary
model for driving usage-centered design. Once a user role model covering the full range of user

page 14 of 18

roles is available, it is possible to develop personas corresponding to selected roles, particularly
the focal roles, that is, those that are the most common and most important for the success of
the design.

As mentioned before, to identify focal roles, user roles are ranked in terms of the anticipated
frequency with which they will be played and their relative importance to the business and
practical success of the system or application being designed. In a sense, focal roles are like
lead roles that take center stage in driving the design to a conclusion, while supporting roles
have significant but less central influence.

At this point is where personas enter the scene. For the focal user roles, one or more personas
might be constructed. By waiting until all the Roles have been catalogued and the most frequent
and important ones singled out for special attention, the designer can be more confident about
what user(s) to represent with personas. Personas enable us to capture the essence of the most
important user roles by fleshing out roles with those elaborations that lend verisimilitude to
the description. Because personas seem more "real" and are typically more recognizable than
user roles, they can sometimes be more effective for engaging and drawing the attention of
designers and developers.

Personas can thus become the personification of roles. One might say that a persona has
character, while a role has characteristics. Characteristics focus designer attention, but
character promotes identification. For the ticketing application, we might construct a couple of
personas, one representing the archetypal user taking on both the Telephone-Selling and
Telephone-Query-Handling Roles and one for the Pickup-Window-Ticket-Issuing Role.

In the final analysis, however, interaction design is about the relationship between a user and a
system, which is precisely what user roles emphasize. Although other representations or user
models may imply or include aspects of it, the user role model captures and features this
relationship front and center in terms that are most relevant to user interface and interaction
design. The combination of user roles with personas can offer designers a powerful modeling
approach that is both engaging and precisely focused.

In Practice
User role modeling played a significant part in one Web design project for a network of
specialty book clubs. After conducting an expert usability evaluation of the existing Web site,
Constantine & Lockwood, Ltd., was retained to do a complete usage-centered redesign of the
combined portal and individual club sites.

The project was kicked off with a half-day collaborative modeling workshop involving 13
participants, including developers, managers, marketing staff, and user representatives. The
group began by building consensus on a vision and business priorities for the project. A list of
user roles was brainstormed and the 19 user roles identified were each briefly described. The
roles were then individually ranked by participants on expected frequency and business
importance, and the combined rankings were used to select six roles as focal, listed here
starting with the highest ranked:

1. Confirmed-Current-Member Role
2. Fence-Sitting-Current-Member Role
3. Potential-New-Member Role
4. Deep-and-Narrow-Information Seeker Role
5. Specific-Information-Seeker Role
6. Former-Member Role

page 15 of 18

The prioritization and discussion of user roles yielded some unanticipated conclusions and
useful insights. For example, although public relations and dealings with the media were
initially considered in forming the business vision for the new site, in the context of careful
comparison of frequency and business importance in relation to other roles, non-customer
roles dropped to the bottom of the list. Such modeling decisions about user roles ultimately
translated directly into specific design decisions, such as using easily recognized home-page
links to divert non-customers, such as the press, to another site.

Another insight was the significance of former and ambivalent book club members for the
business success of the remodeled site. The importance of retaining “fence-sitting” members
and for winning back former members emerged as particularly important, suggesting the
possibility of providing simple ways for former members to renew membership and making it
easier for marginal participants to retain membership with minimal hassle. The importance of
engaging both new and former members led to a navigation architecture in which the visitor
could join a club from anywhere in the site, not just from the home page or a few “gateway”
pages, which was the case in the previous design and on competitor sites.

Figure 8 - One user role for the book club Web site.

In Figure 8 is a reconstructed description of the Fence-Sitting-Current-Member Role. In
principle, anything that supports members supports this role. One could say that a well
designed site that allows members to do what they want without annoyance or inconvenience is
what this role needs. However, the last line of the role description suggests there is more to the
story. The design should make it possible to discontinue membership online, as this gives the
company one last chance to retain the member. Online cancellation could also dissuade an
ambivalent customer from simply dropping out through the expedient of refusing delivery of
regular monthly selections, a costly outcome for the club. However, before the member quits,
the site can offer alternatives, such as, temporary suspension of membership for a few months

page 16 of 18

or switching to the so-called positive-response option. Incentives could be offered, such as, a
reminder that the member would earn a free book after buying only one more selection.

Rather than create an exhaustive task model, the workshop focused initially on task cases
needed for support of the six focal roles. The resulting list of 24 task cases were rank ordered
independently by participants on expected frequency of occurrence, on importance to
customers, and on importance for business success. The rankings were compared and
combined to identify focal task cases, five of which were then defined in full by the group.
These included (in order, highest priority first):

1. joining a club
2. ordering book(s)
3. browsing books by category, title,…
4. seeing book-title descriptions
5. finding book(s) by criteria of interest

Over the eight week project, content models and a navigation map for the site were developed
by the designer and validated by the client. Then the visual and interaction design—in the form
of annotated page mockups—was completed, inspected and refined, validated with users, and
delivered to enthusiastic reception from the client. However, owing to a series of
contemporaneous acquisitions and mergers in which IT functions were shifted and reorganized,
the design was never implemented in its entirety, although elements and ideas from it were
eventually incorporated into various Web sites that came under the newly merged corporate
empire.

While personas were not used in this project, it seems clear that quite a few might be needed to
cover the members of clubs for interests as diverse as mystery and crime fiction, gardening,
and computers and information science. Nevertheless, it certainly would have been possible to
construct personas corresponding to focal roles, such as, Confirmed-Current-Member Role or
Fence-Sitting-Current-Member Role. I have little doubt that this would have appealed to the
client and most likely would have helped make the users more vivid to the developers. For
design purposes, however, the user roles themselves captured enough about what is essential in
the relationships with the Web site to enable a credible task modeling and an informed site
design.

Personas or Not
In my own work, the choice to build personas or not is made on a project-by-project basis, but
the guiding principle in usage-centered design is always to model only those things and only to
the extant that demonstrable payoff justifies the added effort. In some cases, reification of
abstract constructs is more than worth the effort and the complexities it introduces. For
designers who are more comfortable in a world of concrete and recognizable objects than in
one of abstractions, in efforts where empathetic identification with users is lacking and deemed
vital, or in projects gifted with ample resources and generous timetables, there seems little
reason not to augment user role models with personas. On the other hand, where time is short,
resources are few, and the designers are perfectly happy with succinct abstractions, user roles
are most likely more than enough.

Alan Cooper has argued that it is better to design for one user, one “real” user, than to try to be
all things to all users. User role modeling, however, offers a compact way to capture all the
essential variants in how various users can and will relate to a new system. The designer does
not have to understand everything about every user to understand the essentials of those
relationships.

page 17 of 18

References
Ahlqvist, S. (1996) “Objectory for GUI Intensive Systems: Extension.” Kista, Sweden: Objectory

Software AB.
Cockburn, A. (2001) Writing Effective Use Cases. Boston: Addison-Wesley.
Cohn, M. (2004) User Stories Applied for Agile Software Development. Boston: Addison-Wesley.
Constantine, L. L. (1994) “Essentially Speaking,” Software Development, 2 (11). Reprinted in L. L.

Constantine, The Peopleware Papers. Upper Saddle River, NJ: Prentice Hall, 2001.
Constantine, L. L. (1995) “Essential Modeling: Use Cases for User Interfaces,” ACM interactions 2

(2).
Constantine, L. L. (1998) “Abstract Prototyping,” Software Development, 6 (10), October.

Reprinted in S. Ambler and L. Constantine, eds., The Unified Process Elaboration Phase. San
Francisco: CMP Books, 2000.

Constantine, L. L. (2001) “Creative Input: From Feature Fantasies to Practical Products.” In L. L.
Constantine, ed. Beyond Chaos: The Expert Edge in Managing Software Development. Boston:
Addison-Wesley.

Constantine, L. L. (2003) “Canonical abstract prototypes for abstract visual and interaction
design.” In J. Jorge, N. Jardim Nunes, and J. Falcao e Cunha, Eds. Interactive Systems: Design,
Specification, and Verification. Proceedings, 10th International Workshop, DSV-IS 2003,
Funchal, Madeira Island, Portugal, 11-13 June 2003. Lecture Notes in Computer Science, Vol.
2844. ISBN: 3-540-20159-9 Springer-Verlag.

Constantine, L. L. (2004a) “Beyond User-Centered Design and User Experience.” Cutter IT
Journal, 17 (2), February.

Constantine, L. L. (2004b) Agility and Usability. Cutter Executive Report.
Constantine, L. L., and Lockwood, L. A. D. (1999) Software for Use: A Practical Guide to the

Models and Methods of Usage-Centered Design. Reading, MA: Addison-Wesley.
Constantine, L. L., and Lockwood, L. A. D. (2001) "Structure and Style in Use Cases for User

Interfaces." In M. van Harmelan (ed.), Object Modeling and User Interface Design. Boston:
Addison-Wesley.

Constantine, L. L., and Lockwood, L. A. D. (2002) “Usage-Centered Engineering for Web
Applications.” IEEE Software, 19 (2), March/April.

Constantine, L. L., Windl, H., Noble, J., and Lockwood, L. A. D. “From Abstraction to Realization
in User Interface Design: Abstract Prototypes Based on Canonical Components.” Working
Paper, The Convergence Colloquy, July 2000. www.foruse.com/articles/canonical.pdf

Cooper, A., and Reimann, R. M. (2003) About Face 2.0: The Essentials of Interaction Design. New
York: Wiley.

Fowler, M., and Scott, K. (1997) UML Distilled. Reading, MA: Addison-Wesley.
Heumann, J. (2003) “Use Case Storyboards: Integrating Usability with RUP and UML.” In L.

Constantine, (ed.) Performance by Design: Proceedings, forUSE 2003, Second International
Conference on Usage-Centered Design. Rowley, MA: Ampersand Press.

Jacobson, I., Booch, G., Rumbaugh, J. (1999) The Unified Software Development Process.
Reading, MA: Addison-Wesley.

Jacobson, I., Christerson, M., Jonsson, P., and Övergaard, G. (1992) Object-Oriented Software
Engineering: A Use Case Driven Approach. Reading, MA: Addison-Wesley, 1992.

Jeffries, R., Anderson, A. Hendrickson, C. 2001 Extreme Programming Installed. Boston:
Addison-Wesley.

Kruchten, P., Ahlqvist, S., and Bylund, S. (2001) User Interface Design in the Rational Unified
Process. In M. van Harmelan, Ed., Object Modeling and User Interface Design. Boston:
Addison Wesley.

Patton, J. (2002b) “Extreme Design: Usage-Centered Design in XP and Agile Development.” In L.
Constantine (Ed.), forUSE 2002: Proceedings of the First International Conference on Usage-
Centered, Task-Centered, and Performance-Centered Design. Rowley, MA: Ampersand Press.

page 18 of 18

Patton, J. (2003) “Improving Agility: Adding Usage-Centered Design to Agile Software
Development.” In L. Constantine, (ed.) Performance by Design: Proceedings, forUSE 2003,
Second International Conference on Usage-Centered Design. Rowley, MA: Ampersand Press.

Strope, J. (2003) “Designing for Breakthroughs in User Performance.” In L. Constantine, ed.,
Performance by Design: Proceedings of forUSE 2003, the Second International Conference on
Usage-Centered Design. Rowley, MA: Ampersand Press.

Windl, H. (2002a) “Usage-Centered Exploration: Speeding the Initial Design Process.” In L.
Constantine, ed., forUSE 2002: Proceedings of the First International Conference on Usage-
Centered Design. Rowley, MA: Ampersand Press.

Windl, H. (2002b) “Designing a Winner: Creating STEP 7 lite with Usage-Centered Design.” In L.
Constantine, ed., forUSE 2002: Proceedings of the First International Conference on Usage-
Centered Design. Rowley, MA: Ampersand Press.

Wirfs-Brock, R. (1993) “Designing Scenarios: Making a Case for a Use Case Framework.”
Smalltalk Report, November-December.

